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TEMPERATURE STRESSES IN A CYLINDER IN HEAT RESISTANCE TESTS UNDER

CONDITIONS OF VARIABLE HEAT TRANSFER
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The temperature field of a cylinder cooled (heated) in liquid media is
numerically determined witk allowance for the temperature dependence
of the heat transfer coefficient. The results obtained are compared
with calculations for o = const. Nonomgrams are given for calculating
the maximum thermal stresses in the case of a linear dependence of
heat transfer coefficient on temperature.

In most cases modern quantitative heat resistance
estimates are based on the quaatity AT = T — T. Here,
T is the cylinder temperature averaged over the sec-
ticn, and T the temperature of the surface (cooling) or
central (heating) zone, where the tensile stresses are
maximum. When the quasi-static theory of thermo-
elasticity is employed, this difference uniquely deter-
mines the thermal stresses leading fo crack initiation
and the onset of failure [1, 2].
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Fig. 1. Heat transfer coefficient (W/m?. deg)

as a function of temperature (° C) [3]: a) trans~

former oil; b) approximate curve; c) fused
salt, NaNQjg; d) fused salt, KCL.

An examination of the experimental methods of de~
termining heat resistance shows that one of the sim-
plest and commonest is the method of cooling in liquid
media, which has the advantages of quite high heat
transfer coefficients and the small size and simple
shape of the specimens.

However, the heat transfer coefficient of the liquid
media used for cooling (heating) ordinarily depends on
temperature, which leads to nonlinear boundary con-
ditions in calculating the temperature fields. Thus, the
heat transfer coefficient of fused salts has a linear
temperature dependence; for water, water-oil emul-
sions, and oil this dependence has a sharply expressed
maximum, which may be several times greater than
the mean (Fig, 1).

Current methods of estimating the maximum ther-
mal stresses do not take this dependence into account.
The calculations are made either with the mean value
of the heat~transfer coefficient {4, 5] or the maximum
value [6]. The question of the accuracy and limits of
applicability of these assumptions remains open.

Existing analytic methods of calculating the tem-
perature field for a variable heat transfer coefficient
[7—10] also offer only various approximate methods of
estimation, since it is not possible to obtain an exact
solution, In practice these methods are inefficient and
complicated to employ.

We have calculated numerically the maximum mean
temperature difference AT 44 = {T ~ Tglmax of a
cylindrical specimen with allowance for the tempera-
ture dependence of the heat transfer coefficient using
different kinds of coolants.

The heat conduction equation and boundary condi-
tions for an infinitely long cylinder (A,a = const)
cooled in a liquid medium have the form

u 1 o - ou
og £ dt dFo ’
u(g, 0)=1, (1)
du -0
OF o
ou .
T ket — Bi (ufg=1) & [se=1. (2)

For fused salts Bi is a linear function of the dimension~
less temperature:
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Fig. 2, Maximum dimensionless mean temperature

difference for a linear temperature dependence of

the heat transfer coefficient (¢ = arctgdBi/du):

1) Big = 0.05; 2) 0.1; 3) 0.15; 4) 0.2; 5) 0.25; 6) 0.3;
7) 0.35; 8) 0.4.

d Bi

Bi (1) = 4 + Biy, (3

where dBi/du, a constant for a given fused salt, char-
acterizes the slope of the temperature curve of the
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Fig. 3. Relative errors in calculating ﬁmax from the
mean (a} and maximum (b) values of the heat transfer
coefficient as a function of temperature. 1) Biy = 0.05;
2) 0.1; 3) 0.15; 4) 0.2; 5) 0.25; 6) 0.3; 7) 0.35; 8) 0.4.




370

heat transfer coefficient. For coolants such as water
and oil we will approximate the Bi(u) relation with a
set of linear segments of the form (3) with allowance
for the continuity of the Bi(u) curve:

Bi, ) = 2B

u+ Bioi~
i
u <ULty (4)

where uj and uy denote the ends of the j-th segment.
Relative Errors ¢ in Calculating AT yax from

the Mean and Maximum Values of Bi as a
Function of the Initial Temperature Level T,

Omax,% bmean %

To,°C

k=0.1 k=0.3 k=0.6 k==0.1 £=0.3 k==0.6
800 |4-32.3] +15.7 + 3.7 + 8.1 — 3.2 —11.2
700 |+15.4 +29 | +-38 | 4+ 3 — 68 | —5.2
600 4 0.9 + 9.1 +17.6 | — 23 | + 5.6 | +14.4
500 |-+17.8] -+-20.7 +28.3 —24 .9 —20.6 —12.2
400 |+ 4.9) -11.6 | +19.9 | —28.5 | —21.5 | —13.6

The number of segments is selected so as to obtain
a given accuracy of approximation of the temperature
curve of the heat transfer coefficient; AT,y Was cal-
culated by the pivotal method on an M-20 computer.
This method is very convenient for solving problems
of this type, since it ensures convergence and the nec-
essary accuracy for an arbitrary relation between the
time and coordinate steps.

The calculated values of the dimensionless mean
temperature difference at the maximum for a cylinder
cooled in a fused salt are presented in Fig. 2. The
curve obtained can also serve as nomograms for cal-
culating the maximum thermal stresses when the heat
transfer coefficient is a linear function of temperature.
Values of the parameters dBi/du and Biy were selected
with account for the known temperature dependences
of the heat transfer coefficients of fused salts (Fig. 1),
the properties of the investigated materials (it was as-
sumed that o lies in the range 300—1000 W/m?. deg,

A = 10—30 W/m . deg), and reasonable specimen dimen-
sions (R = 5—15 mm). In the experiment, when the
composition of the coolant remains constant, the pa-
rameter dBi/du can be varied by changing the initial
temperature level and the dimensions of the specimen.
The Bi number has its maximum value at the initial
moment, i.e., Bigmax = Bi(Ty), and the mean value
lies in the range between the initial temperature and
the temperature of the medium, i.e., Bimean = (Bij +
+ Bimax)/2. The greatest deviations from the true val-
ues ATy ax ~ 20—30% are obtained in calculations
based on the mean value at small angles of inclination
of the temperature curve Bi(u) (~5—15°) and small lev-
els Biy (0.05-0,15) (Fig. 38). For Biy >0.15 the error
is 10-20%.

Under the same conditions calculations based on the
maximum value of Bi give a much smaller error for
all Bij (about 5~10%). At medium angles of inclination
up to about 45° calculations based onboth the maximum
and the mean value of Bi give approximately the same
error (about 10—20%).
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At angles of inclination greater than 45° the error
of calculations based on the maximum of Bi, which in-
creases monotonically with the angle of inclination and
depends only weakly on the level Big, becomes higher
than that for calculations based on the mean; thus
Smax = 20%, while 65 6qy falls to 10—-15%.

As already mentioned, liguids such as water, oil,
aqueous salt solutions, and water-oil emulsions have
a heat transfer coefficient with a sharply expressed
maximum, whose magnitude and location vary with the
nature and composition of the liguid.

For calculation purposes we selected atypical curve,
characteristic of oil, which was approximated by linear
segments (Fig. 1): :

" da
Bi;(u)==Fk U+ ay; |,
i@ [ du |; - 01]
U< u< g,y (5)
where
— R 311y 2
k—T-lOm .deg/W.

Variation of k makes it possible to use the results
of calculations for specimens of different materials
with different dimensions and also for any tempera-
ture dependence of the heat transfer coefficient simi-
lar to that presented in Fig. -1.

The mean and maximum values of Bi characteris-
tic of each segment of the approximate curve were de-
termined as follows. On segment 1(800—550° C} Bijy,x
was taken equal to Bi (550° C), and Bipean = (Bijy +
+ Bimax)/2, where Bij, = Bi(Ty) is the initial value of
Bi. On segment 2 (550—250° C) Bipyax is equal to its
initial value, i.e.., Biy . = Bi(Ty), and Bijyegp =
= (Biyax + Bis)/2, where Bi; is the value of Bi corre-
sponding to segment 3.

We will examine in turn the variation of the errors
in determining ATy, in calculations based on the
mean and maximum values of Bi with the initial tem-
perature level (see table).

As the initial temperature level on segment 1 ap-
proaches 550° C, the errors of calculations based on
Bipy, gx and Biyeqn 8t moderate values of k ~ 0.1-0.3
progressively fall. For an initial level remote from
550° C, the errors in calculating AT,y from Bipax
fall as k increases from 0.1 to 0.6 from about 30 to
about 5%, and in calculations based on Bimpeap lie
within the range +5—10% for all values of k.

When the initial temperature level varies close to
the boundary of segment 1 or on segment 2, while Ty,
lies within the second segment, the conclusions ob-
tained for fused salts in the range of Biy and dBi/du in
question will be perfectly valid. The case when Ty,
falls within segment 3 is of no special interest, since
as the initial temperature level approaches the bound-
ary of the third segment, there is a gradual reduction
in the errors involved in calculating ﬁmax from both
Bijean 2nd Bipyax.

An analysis of the results obtained yields the follow-
ing conclusions:
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1. The errors in calculating AT, 4 from the se~
lected heat transfer coefficient (maximum or mean)
may reach 20~30% for liquids such as water, oil, or
fused salts.

2. By choosing a suitable value of Bi under given
cooling conditions when the heat transfer coefficient is
a nonlinear function of temperature it is pessible to
obtain a minimum error in calculating ATy qx Of 5—
10%. Recommendations concerning the choice of this
value of Bi are determined by the results presented
above.

3. In the case of a linear temperature dependence
of the heat transfer coefficient if is convenient to use
the nomograms in Fig. 2 for calculating Z'—fmax-

NOTATION

u=(T ~ Ty)/(Ty ~ T¢) is the dimensionless tem-
perature; & = r/R is the dimensionless coordinate;
Fo = a7/R? is dimensionless time (Fourier number);
Bi(T) = «(T)R/A is the Biot number Bi; = a(ToR/\;
Ty is the initial temperature of cylinder; Tg is the
coolant temperature; T, is _the temperature of cylin-
der surface at maximum of AT =T — Tg.
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